OOPSLA

Washington, DC—26 September-1 October, 1993

Addendum to the Proceedings

Invited Address

The Society of Objects

Mario Tokoro
Keio University &
Sony Computer Science Laboratory Inc.

Abstract

In this paper, I will first review the notions of objects
and concurrent objects and discuss their main roles.
Then, I will introduce two observations on our current
computer systems and explain why we need an evolved
notion of objects, which we call autonomous agents, 1o
describe open and distributed systems. An autonomous
agent is a software individual that reacts to inputs
according to its situation and its goal of survival. A
collection of such autonomous agents shows emergent
behaviors which cannot be ascribed to individuals,
eventually forming a society. Research into achieving a
society of autonomous agents being carried out at Sony
Computer Science Laboratory and Keio University will
then be presented. In the last section, I will speculate
about yet-to-be-realized computational modules called
volitional agents, that could be used to create safe,
evolutionarily stable, cohabitating society.

1 Introduction

Human society is characterized by a dichotomy between
individuals with their goals and aspirations, and the
emergence of collective behavior that cannot be ascribed
to individuals. Intriguingly, computational systems and
environments are beginning to exhibit some of the
collective behavior that is characteristic of society.

As high speed communication networks proliferate,
every computer and, thus, every software module is
connected with every other. An enormous variety of
software, with many variants for each type, has already
been produced, and will continue to be produced by a
great many software manufacturers. Hence, future
software systems will consist of multi-vendor software,
often dynamically integrated, residing at multiple sites
as servers. Software modules, or servers, are
dynamically shared by multiple users, and may be
changed from time to time. Future software systems
will also exhibit dynamic resource discovery. It will be
useful to view such systems as forming a society that is
analogous to human society and interleaved with it.

Hence, we need an evolved notion of objects, derived
from a dynamic and interactive viewpoint. In this
context, I will speculate on what the evolved notion of
objects is, and how future software should be composed.

Addendum to the Proceedings

OOPSLA’93

I will first review the notions of objects and concurrent
objects. Then, I will present two observations on our
current computing systems operating in open,
distributed environments, and illustrate the necessity
for higher-level software modules called autonomous
agents. Then, I will present some of our research work,
being carried out at Sony Computer Science Laboratory
and Keio University. This research is aimed at achieving
a society of autonomous agents that cohabit with human
society. The presentation features a personal,
personified computer with a face and capable of vocal
communication, called the Intimate Computer; an
infrastructure model that abstracts future open,
distributed computing environments, called the
Computational Field Model (CFM); the Apertos
distributed, real-time operating system; and the Virtual
Internet Protocol (VIP) mobile host protocol. In the last
section, I will be a little provocative in advocating an
even more advanced notion of autonomous agents,
called volitional agents, that could be used to create
safe, evolutionarily stable, cohabitating society. I will
conclude this paper with a description of recent
developments toward the understanding of collective
behavior in terms of dynamic, non-deterministic,
stochastic, and irreversible processes taking root in
various scientific fields.

2 From Objects to Concurrent Objects

The world in which we live is concurrent in the sense
that there are multiple active entities; distributed such
that there is a distance between entities that yields a
propagation delay in communication between them; and
open, meaning that the entities and their environment
are always changing. Computation can be considered as
a simulation of part of the real or an imaginary world. In
doing a simulation, you can model your problem in terms
of sequential computing, concurrent computing,
distributed computing or open computing. To solve a
simple, small problem, sequential computing is usually
sufficient. However, when the problem becomes larger
and more realistic, it is much easier to model it as
concurrent, distributed, or open computing. For example,
if you have multiple users at a time, such as in banking
or airline reservation systems, you would naturally
model the problem in the form of concurrent or
distributed computing.

2.1 Objects

The notion of objects provides a very convenient way of
describing problems in any of sequential to concurrent,
distributed, or open computing. An object is usually
considered as being a physical or logical entity with a
unified communication protocol, which is usually
message passing [44]. It is composed of a local storage
and a set of procedures, as shown in Figure 1.

c 1} Storage

-7
E
E
]

However if we examine more closely what an object is,
it can be scen to be an abstraction of compuiation as
things. Chairs, pens, books, ... these are things. The
sky, air, and water are not usually considered as being
things. Things can be distinguished from others. An
apple is distinguished from other apples. Water in a
giass can now be distinguished from other glasses of
water. This is the external view of things. The other
characterization is that a thing has both an inside and an

qgaractenzanon 15 that a WAL 4o DAY & AMINILC 4l

outside. This is the internal view of things. Programming
and computing a problem in terms of the interaction
between things is the true benefit of object orientation.
It is for this reason that the notion of objects is

gtribhatad
applicable equally to concurrent, distributed, and open

computing.

| S L SRV [P Sy | . T

Object-oriented compuuig can be unaers 0d as being a
movement from a microscopic view of com uung to
macroscopic view, where microscopic corresponds to
computatlon done by executmg an algorlthm and
macroscopic is computation done using the mutual

effects of OD]CCtS

However, objects in most existing languages and
systems are sequential, and therefore, static, or
passive. This is a remnant of programmmg styles from
when the computer was centralized and based on a
uniprocessor. Using this kind of object abstraction,
programmers have to write execution control, or
processor allocation, for objects, if they need to write a
concurrent program. That is, we need the notion of
processes on iop of the notion of objects. This is very
inconvenient and is a common source of errors. The
fundamental reason for this is that real things are not
like this. Every thing exists and behaves
simultaneously on its own right. Analogically, every
object should exist and behave simultaneously.
Therefore, it should have its own processor.

4 Washington, D.C.

2.2 Concurrent Objects

‘The notion of concurrent objects is an extremely
significant development. A concurrent object contains a

i it
(virtual) processor, as shown in Figure 2. Here, we can

ehmmate the notion of processes which is necessary in
concurrent programming using sequential objects.

Programmers don’t have to describe execution control.
Concurrem objects are executed in the same way as in

time- sharing systems.

storage E

processor

Figure 2: A Concurrent Object

We can trace the history of concurrent objects back to
the early 70’s when Carl Hewitt proposed Actors

[16, 1]. Since then, many concurrent gbject-oriented

languages and systems have been proposed and used.
Concurrent Smalltalk {56] and Orient84/K [24] are
languages which I designed with my co-researchers.
ABCL [59], POOL [3], Concurrent Fiffcl [71,
Concurrent C++ [1.)_], Active UU_]CLLD Lvﬂ, and miany
other languages have also been designed. It was almost
ten years later when I edited the book titled, “Object-
Oriented Concurrent Programiming™ with Aki Yonezawa
[60]. The notion of concurrent objects can be found in
the field of operating sy~icuss, too. Examples inciude
Eden [5] and Apertos [57, 58]. Theoretical
investigations on concurrent ohjects have also been
pursued, such as w-calculus [30] and v-calculus

[19, 20]. Some recent accomplishments are detailed in

[2].

Although the notion of concurrent objects is a more
natural means of modeling things in programming, it has
not yet found practical or commercial use. This is
probably just a matier of the notion ©ot yet being well
known. It takes some time, say 10 years or so, until
people actually feel comfortable with a new notion.
Virtual memory is one such example, and (sequential)
object-oriented programming is another. The notion of
concurrent objects will become much more important
when we need to migrate objects in a widely distributed
environment. I fully expect the notion of concurrent
objects to be accepted and widely utilized in the near
future.

In summary, the most important role of objects (for both
sequential and concurrent objects) is modularity: that is,
to enable the writing of a program as a thing with
interface. This affords us various benefits, such as
macroscopic programming, analysis and design, classes
and instances, class hierarchies, concurrency, and so on.

September 26—October 1, 1993

3 Computation in Open, Distributed
Environments

I have been doing research on concurrent objects for
more than ten years. The notion is neat, and provides us
with a very appropriate level of abstraction. As such, it
seemed as though it would be enough for describing
distributed and even open systems. I tried to convince
myself that concurrent objects would be enough. And, 1
was almost fully convinced. But something had annoyed
me for a long time and prevented me from being fully
convinced. In the following subsections, after presenting
the essential characteristics of open, distributed
systems, 1 will explain what it was that annoyed me by
observing two example systems.

3.1 Essential Characteristics

The technical characteristics of open and distributed
systems can be summarized as follows. Distributed
systems are characterized by there being distance
between objects, which results in communication
delays. Distance, and therefore delay, has an inherent
consequence that there is no unique global view of the
system. The state-space of the system that one
observer sees is different from the state space a distant
observer sees. Since there is delay in communication,
we use asynchronous communication for the sake of
efficiency. Asynchronous communication means that the
timing when the sender sends a message and that when
the receiver receives it are different. By using
asynchronous communication, we can exploit the
concurrency between computation and communication.

Open systems are characterized by their entities and
environments constantly changing. Widely distributed
systems are usually open systems, since the topology
of the networks, the component computers, and the
functions, quality, and locations of the services are
dynamically changing. Thus, our future computing
environment will be modeled well as an open,
distributed environment.

3.2 Two Observations

Here, I would like to describe two observations on our
computing systems, which offer a good prediction of
future computing environments.

The first observation is as follows: Assume you need a
system. You write a specification, you program it or
have somebody else program it, and you use it. Then,
after a while, or perhaps even before the completion of
the system, you need to change it. And at a later time,
you need to change it again. This is the problem of
version management. As everybody knows, it is not
easy to follow how the current system is composed, and
how it works.

Version management is much more complex in open,
distributed environments. Assume your friends or
colleagues happen to know that you have a good
system. So, they ask you for permission (o use it. They
are usually at remote sites, so they want to use your
system through remote procedure calls (or remote
object calls). However, they also request revision of the
system to tailor the system to their particular needs.
This tends to be repeated over and over, in a distributed
manner. Thus, after a while, nobody understands the
inner workings of the system, even though the users are

Addendum to the Proceedings

using the system at a reasonably satisfactory rate.
However, a problem arises when somebody finds a bug.
How can the system be debugged and maintained
without interfering with the other users? What should
be done if the system stops? Can you, in fact, depend on
the system at all?

The second observation is of almost the same problem,
but from a different viewpoint. Nowadays, programs
with the same functions are provided by many different
vendors, so that users can choose those that best fit
their needs and budget. For example, user #1 buys an
OS from vendor #1, and a windowing system from
vendor #2, etc. This is very good situation for the users.

Vendors request software houses to develop program
modules, and buy complete modules from other vendors,
and combine those modules into software products for
release under the vendor’s own brand. I call this nested
multi-vendor software in the sense that software
vendors use other software vendors’ software as their
components. Up to this point, users have a physical
copy of the software on their machines.

However, the next step is a distributed version. Here,
the users don’t have a copy on their machines. Instead,
they only have a calling program and the right to access
programs on the vendors’ machines. In turn, the
software on the vendors’ machines will call program
modules residing on machines located at software
houses, and so on. I would like to call this distributed,
nested multi-vendor software. Here, no physical copy of
the programs are made. Instead, they perform remote
procedure calls, or remote object calls to each other. In
fact, this is already happening. You are using a program
on your network through a license server. The program
may use other programs remotely (Figure 3).

Figure 3: Distributed, Nested Servers

Once again, assume that somebody finds a bug. How
can the system be debugged and maintained without
interfering with the other users? What should be done if
the system stops? Can you depend on the system at all?

I would like to summarize that, in open and distributed
systems, we use a software module without having
complete knowledge of it. Thus, it would appear to be
like it is changing by itself. And, you need to discover
the services you need. Then, you have to write your
program in such a way that it protects the users or
customers, by protecting the services and defending the
computational resources you provide.

I don’t think that concurrent objects provide a suitable
framework for such defensive programming. First, I
would like to claim that we need the notion of time for
programming open, distributed systems. This necessity

OOPSLA’93 5

is derived from the fact that the essential difference
between a distributed system and a concurrent system
is the existence of distance in the system, which is
equivalent to time. Second, we need a higher level
module than a concurrent object for constructing a larger
system. Hence, the above situations can be naturally
modeled as a society of such modules. Let’s call such a
higher level module an autonomous agent.

4 Autonomous Agents

Now, I would like to give a rough definition of
autonomous agents. First, I would like to clarify that the
notion of autonomous agents does not conflict with the
notion of objects or concurrent objects. In fact, an agent
will be composed of concurrent objects, in much the
same way as a person is composed of cells living
concurrently. An autonomous agent is the unit of
individual software, that interfaces with humans, other
agents, and the real world in real-time. Each
autonomous agent has its own goal, and reacts to
stimuli, based on its situation. It behaves to survive,
The collection of autonomous agents forms a society.

The definition of an individual is most important in
thinking about autonomous agents. This is one kind of
granularity argument, but taken from a completely
different viewpoint, i.e., not for parallelism or efficiency,
but for robustness or defensive programming. According
to recent findings in biology and the theory of evolution,
definition is very difficult, almost impossible, in fact. But
we will not take such a serious approach. We instead
use a naive, intuitive definition:

An individual autonomous agent is a collection of
component objects (or cells) that are not physically
shared with other individuals.

We assume an individual is a unit of feedback for utility
or reward. An individual can be considered as being the
unit of security, which corresponds to our bodies’
immune system. It can also be regarded as being the
unit of reliability and maintenance which corresponds to
homeostasis. That is to say, security and reliability
have to be provided and maintenance has to be done on
an individual basis, not as a whole system. Each
individual autonomous agent should provide such
abilities per se.

For its functionality, each autonomous agent has an
individual goal. It is reactive, in the sense that it
responds to a stimulus, taking the situation or
environment into consideration, in real-time. This
implies that an autonomous agent is not just an object
that responds to an input, but also needs to be able to
learn the situation, and to have the ability to make
timely decisions in real-time.

Survival is yet another important property of each
individual autonomous agent. This property is, in fact,
the result of only autonomous agents with a higher
survivability surviving. To survive, an autonomous
agent has o make its best effort to satisfy the users, in
terms of response time and functionality; or the quality

6 Washington, D.C.

of services in general, so that it can maximize its utility.
Restaurants with bad food or those that makes you wait
one hour for “today’s special” would never survive. To
survive, an autonomous agent has to keep its losses to
a minimum. This is called the least suffering strategy. A
simple example is that, if your order doesn’t come
within one hour, you should decide whether to wait
longer or move to a different restaurant. You have to
monitor the sitwation and make a decision on fime-out.
That is to say, time-out is the last resort for survival in
open, distributed systems. A simple programming
language (47] and a formal system [42], which provide
for the agents’ survivability by incorporating a time-out
notion, were presented at OOPSLA’92 by myself and
my co-authors.

Agents should provide the facility of reflection to allow
their adaptation to environments [28, 25]. Agents with
negotiation ability are advantageous. Agents that can
maintain a cooperative relationship for a longer duration
are more profitable. They can form a group, and thus,
society. Research on negotiation, cooperation, and group
formation can be seen in one area of Artificial
Intelligence, called “Distributed AI” [23, 13] or
“Multiagent Systems” [10].

5 Current Research Activities

Here, I would like to present some of our research
activities into open and distributed systems, currently
being carried out at Sony Computer Science Laboratory
and Keio University. The work is mainly based on
concurrent objects and, as a whole, on autonomous
agents.

I believe that a future computer system must be:

* ubiquitous, so that you can use it any time and
anywhere;

« portable and mobile, so that you can carry it and
use it on the move;

* reliable and secure, so that you can depend on it;
and

s friendly, so that it is comfortable and easy to use.

With the ultimate goal of realizing such a computer
system, I have been proposing two notions;
intimate computers and computational field [52, 53].

5.1 Intimate Computers

Intimacy implies security, peace of mind,
trustworthiness, reliability, and respect. The intimate
computer is intended to inspire users with such a
feeling. It has a face, and it understands natural
languages, so that it presents you with a completely
different user-computer interface from those we are used
to today (Figure 4). An intimate computer can be seen
as an autonomous agent overall, whereas it is
composed of a collection of autonomous agents.

September 26—October 1, 1993

Figure 4: An Intimate Computer

An intimate computer can be thought of as an evolved
version of a Personal Digital Assistant. It can be used
as an access terminal to distributed computing facilities.
It can be used as a communication terminal to access
other intimate computers and their users. But, the
ultimate purpose is the dialog itself; understanding each
other and recognizing each other, rather than an
interchange of ordering and inquiring.

Unfortunately, intimate computers are not yet available,
but the following is an example of a possible
conversation with an intimate computer in the future:

“Hey buddy, could you arrange a dinner meeting
with Ralph?”

My intimate computer understands who I mean by
Ralph, asks Ralph’s intimate computer when he is
available, what kind of food he likes, makes a
reservation for a restaurant, then comes back to me
saying,

“It’s done.”

On another occasion, my intimate computer suddenly
talks to me

“Hey, Mario, how’re you doing?”
And I respond
“Don’t bother me now!”
Then, my intimate computer exultantly says to me

“Sorry, but I guess you forget something. It's your
daughter’s birthday. You should go back home right
now!”

Addendum to the Proceedings

5.2 Computational Field Model

To make intimate computers usable in a distributed
environment, we need an infrastructure. I am proposing
a higher-level abstraction of distributed computing than
that of computers connected by networks. Forget about
computers and networks; let’s consider the field of
computers. It is like a sea of computers. Concurrent
objects are floating on the sea (Figure 5). The sea, the
Computational Field, yields various forces between
objects for the suboptimal placement of objects for
moving users, grouping objects, balancing loads, and
avoiding faults, such as:

» Gravitational force is defined for grouping objects.
Frequent communication between objects yields a
stronger force.

* Repulsive force is defined for load balancing. If two
objects come very close, the repulsive force
increases between them.

« Friction is defined for stability. It is proportional to
the size, or weight of each object, so that a large
object tends not to move.

Significance of the Computational Field Model is that it
integrates load balancing and object grouping.

Figure 5: Computational Field Model

I will explain how the Computational Field works
(Figure 6). If you place a task in the Computational
Field, a mountain is formed which is a collection of
concurrent objects for the given task. Then, a repulsive
force between the objects arises, so that the mountain
becomes lower and lower. At the same time, the
gravitational force between concurrent objects
increases, as they send messages to each other. Thus,
they form a hill, as the two forces balance. If the user
moves, the mountain follows.

OOPSLA’93 7

New Open Ended

Figure 6: Dynamic Object Placement

All those properties are actually realized by an
underlying distributed operating system. Also, the
notion of concurrent objects is indispensable for object
migration, as pointed out above.

5.3 Essential Technologies

To realize intimate computers and the computational
field, many points demand our attention. We are
currently concentrating our efforts on the following five
topics:

* Multi-Modatl Interaction

» Operating Systems

» Computer Networks

» Programming Languages, and

+ Muiti-Agent Systems

Demonstration videos are available for the first three
topics.

Speech Dialog with Facial Displays

The first demonstration is of the speech dialog system
with facial displays [48, 33]. The system was developed
to verify the idea of bringing facial displays into human
computer interaction as a new modality to make
computers more communicative and sociable. It consists
of two subsystems. One is a speech dialog subsystem.
The other is a facial animation subsystem.

The speech dialog subsystem consists of a speech
recognition module, a syntactic and semantic analyzer, a
plan recognition module, a response generation module,
and a voice synthesis module. It realizes speaker-
independent speech recognition and handles the
speaker’s intentions. A facial animation subsystem
generates a facial display by the local deformation of the
polygons representing the 3D face. We adopted Keith
Waters method [55] for our deformation scheme. Lip
and speech synchronization was also implemented.

8 Washington, D.C.

The speech dialog subsystem recognizes a number of
typical conversational situations that are important in
dialog. These situations are associated with specific
conversational facial displays categorized by Nicole
Chovil [8]. Upon detecting a prescribed sitvation, each
module in the speech dialog subsystem sends a request
for a specific facial display to the facial animation
subsystem. An empirical study of the system with 32
subjects indicated that the speech dialog system with
facial displays is helpful, especially in the first
interaction with the system. An example of a session is
shown in Figure 7.

Ji~

Figure 7: Speech Dialog System with Facial Displays

The system uses two workstations, one for speech
dialog and the other for facial display, running in real-
time mode. The speech dialog subsystem is designed as
a multi-agent system, whereas the facial display
subsystem is currently a collection of C programs. We
plan to introduce more modalities, such as reading the
user’s face. We are also interested in investigating the
relationship between the framework of our work with
social knowledge and social actions, as presented by
Les Gasser [14].

Apertos Distributed Real-Time OS

The second demonstration is on the Apertos operating
system [57, 58]. The Apertos OS is a pure object-
oriented, real-time OS, based on concurrent objects. It
clearly separates objects and meta-objects, and it can
evolve by itself by using the mechanism of reflection,
without stopping. Object migration and distributed
naming mechanisms are provided at the system level.
That is, this supports the Computational Field. The
Apertos OS has been stably operating on Sony’s 68030-
based workstations since April 1991, and was recently
ported to Sony’s R3000-based workstations and 486-
based IBM PC-compatible computers.

Virtual Internet Protocol

The last demonstration is of the computer network
protocol that supports mobile hosts. It is called the
Virtual Internet Protocol, or VIP for short [50, 49]. By
using this protocol, you can hook-off your portable
workstation from the current network, move with it, and
hook it into any interconnected network. You can obtain
the same computing environment there, and all

September 26-October 1, 1993

messages are redirected to the new location, taking
their optimal routes. You can even move with your
portable workstation while preserving communication
channels. The mechanism we designed is analogue to
that of virtual memory. Virtual to physical address
translation is done in a distributed manner by using
cached mapping information. Since this protocol is
implemented as a sublayer of IP, it is transparent to
application programs. It has been running since spring of
1992, and has been proposed to the Internet
Engineering Task Force (IETF) for standardization.

VIP protocol is running on UNIX and MS-DOS
machines, but is not described in an object-oriented
style at this moment. Porting to Apertos OS in an
object-oriented fashion will be done very soon. We are
also interested in combining this technology with real-
time communication facilities [43].

Programming Languages and
Multi-Agent Systems

We are intensively doing research on Programming
Languages and Multi-Agent Systems. Regarding the
former field, we are especially interested in persistent
object programming languages [54, 31], distributed
transactions [18] and the applicability of the notion of
reflection to distributed and real-time programming [37,
21]. For the latter, we are interested in collaboration
[38, 29].

6 Volitional Agents

I have proposed concurrent objects and autonomous
agents, and have presented some of our research at
Sony Computer Science Laboratory and Keio University.
Here, I would like to raise the final question, that is:

Are autonomous agents sufficient for future
computing? Are they safe? Are they stable?
Are they cooperative to humans?

In fact, I don’t have any answer to these questions. But,
I would like to be a little provocative and controversial
in saying that the definition of autonomous agents given
in section 4 may not be sufficient, safe, or cooperative to
humans, and that a society composed of such
autonomous agents would not be stable. Hence, I would
like to propose volitional agents. Volition means
“actions with will” or “actions of will.” So, a volitional
agent is an autonomous agent with will, or a
spontaneous autonomous agent. A volitional agent is
more active than an autonomous agent which is
“reactive.” It has desire, or it is aggressive [27].

I am saying that volitional agents are safer, more stable,
and more cooperative with humans, compared to
autonomous agents that are reactive. Reactive implies
passive in a sense, since the agent doesn’t perform any
action unless it receives input. A society of autonomous,
reactive agenis may seem safe and stable, because they
are passive. But that can be the very source of danger.
You cannot know anything unless you give an input to
the society, which may eventually result in a fatal
damage.

Volitional agents are active and dynamic, and are doing
something all the time. Internally, they will have
antagonistic desires. Externally, they will have
contentions with other agents. They will cooperate to
achieve higher utility, and they will compete with each

Addendum to the Proceedings

other to survive through natural selection (since
computer environments are rather artificial than natural,
we may need minimal legislation to ensure fair
competition). They might behave selfishly [9].

Since volitional agents are active, and society is living,
we can observe the behavior of the society. And, we can
obtain even a higher stability of the society. Of course, it
is impossible to predict the precise behavior in any
ways, since the system is very large and complex.
However, we can take advantage of recent
developments in the study of complex dynamical
systems. For example, according to the theory of chaos
[11], it is given that under a certain condition, a system
of active or dynamic components give a higher stability
than that of passive or static components.

A society of agents, as well as our own society, should
be evolutionarily stable. This means that society is
stable for a while, but the environment changes, so that
it rather quickly moves to the next stable state. This
phenomenon can also be explained for a system of
active or dynamic components as a phase transition by
taking the same approach. Hence, we can conclude that
volitional agents can provide a higher stability without
sacrificing flexibility of the society than autonomous
agents. This will lead to a society that is safer and more
cooperative with humans.

The importance, and the necessity for aggressiveness in
forming a stable society has been studied in the field of
biology and ethology, such as in the work of Nikolass
Tinbergen [51] and Konrad Lorenz [27]. The stability of
society has also been intensively studied by political
scientist Axelrod [4], biologist Maynard-Smith [45],
and other researchers, taking game-theoretic
approaches. Study for the behavior of society taking
dynamical systems approaches are found in the new
area called “Ecology of Computation” [22] or
“Emergent Computation” [12]. We have also started
research in this direction, particularly on chaos and
collective behavior [35, 46, 36]. Distributed and
massively parallel computing are expected to be
powerful computing platforms [26].

7 Conclusions

I have discussed a couple of things in this paper.
Objects are things which can be distinguished from
others. This notion brought us “macroscopic
programming.” Concurrent objects are the “real” self-
contained objects including virtual processors. This
provided us with easy concurrent programming. Objects
and concurrent objects are the cells for autonomous
agents. Autonomous agents are based on the notion of
the individual, are reactive, and try to survive. They form
a society.

Then, I described and showed our recent research
accomplishments toward the society of agents: the
Intimate Computer, the Computational Field Model, the
Apertos object-oriented OS and the VIP mobile host
protocol. Finally, I raised a controversial proposal for
volitional agents, that would provide safer and more
cooperative interaction with humans and other agents,
and that would provide an evolutionarily stable society,
with which we can cohabit.

The notion of volitional agents is a conjecture, without
any proof. We don’t know how to make a volitional

OOPSLA’93 9

agent. We don’t even know what “desire,” or
“aggressiveness” mean. But a new way of under-
standing collective behavior in terms of dynamic, non-
deterministic, stochastic, and irreversible processes is
taking root in various scientific fields. I have already
mentioned this trend in biology, ethology, and the theory
of evolution. We can also see similar movements in Al
such as the Society of Mind by Marvin Minsky [32] and
the Subsumption Architecture by Rodney Brooks [6]. It
is also happening in Chemistry and Physics. For
example, a new view is given based on Thermo-
dynamics by Ilya Prigogine [41]. It is giving us the sign
of departing from the “reductionist attitude” or the
“Cartesian attitude” in science.

The notion of Open Systems was advocated by
philosopher Karl Popper [39, 40] and brought in to
computer science by Carl Hewitt [17]. We must
inevitably see Distributed and Open Systems as
societies. This is already coming. In this paper, I
proposed the notion of autonomous agents and volitional
agents as individuals of societies. Volition might be the
true meaning of autonomy, and may realize a safe,
stable, cooperational society with computers.

Acknowledgment

I would like to thank Akikazu Takeuchi, Yasuhiko
Yokote, Fumio Teraoka, Katashi Nagao, Hiroaki Kitano,
Tun Tani, Toru Ohira, Chisato Numaoka, Shigeru Watari,
Tatsumi Nagayama, and other researchers at Sony
Computer Science Laboratory; Kohei Honda, Ichiro
Satoh, Vasco Vasconcelos, and many other students
and ex-students at Keio University; Aki Yonezawa,
Satoshi Matsuoka, Gregor Kiczales, Eric Manning, Koiti
Hasida, Jorg Kaiser, and many other friends of mine in
computer science, for their inspiring discussions and
help in preparing for the speech and this manuscript.
Finally, I would like to thank the many members of the
audience at the OOPSLA’93 conference who gave me
useful comments and encouraged me to prepare this
manuscript.

References

[1] Agha, G., ACTORS: A Model of Concurrent
Computation in Distributed Systems, MIT Press, 1986.

[2] Agha, G., Wegner, P, and Yonezawa, A, eds,
Research Directions in Concurrent Object-Oriented
Programming, MIT Press, 1993.

[3] America, P., POOL-T: A Parallel Object-Oriented
Language, in Object-Oriented Concurrent Programming,
eds. Yonezawa, A., and Tokoro, M., MIT Press, 1987.

[4] Axelrod, R., The Evolution of Co-operation, Basic
Books, Inc., 1984.

{5] Black, A. P., “Supporting Distributed Applications:
Experience with Eden,” Proceedings of ACM
Symposium on Operating System Principles, p. 39-51,
December, 1985.

[6] Brooks, R., “Intelligence Without Representation,”
Artificial Intelligence, Vol. 47, p. 139-160, 1991.

[7] Caromel, D., “Concurrency: An Object-Oriented
Approach,” Proceedings of TOOL2, p. 183-198, June,
1990.

10 Washington, D.C.

[8] Chovil, N., “Discourse-Oriented Facial Displays in
Conversation,” Research on Language and Social
Interaction, Vol. 25, p. 163-194, 1991

[9] Dawkins, R., The Selfish Gene (2nd Edition), Oxford
University Press, 1989.

[10] Demazeau, Y., Muller, J.-P., and/or Werner, E,
Decentralized A.l. 1, 2, and 3, North-Holland, 1990,
1991, and 1992.

[11] Devaney, R. L., An Introduction to Chaotic
Dynamical Systems (2nd Edition), Addison-Wesley,
1989,

[12] Forrest, S. (ed.), Emergent computation, MIT
Press, 1991,

[13] Gasser, L. and Huhns, M. (eds.), Distributed
Artificial Intelligence Vol.2, Pittman, London, 1989.

[14] Gasser, L., “Social Knowledge and Social Action:
Heterogeneity in Practice,” Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI'93), p. 751-758, 1993.

[15] Gehani, N. H., “Concurrent C++: Concurrent
Programming with Class(es),” Software Practice and
Experience, Vol.16, No.12, Dec, 1988.

[16] Hewitt, C. E., “A Universal, Modular Actor
Formalism for Artificial Intelligence,” Proceedings of
International Joint Conference on Artificial Intelligence,
1973.

[17] Hewitt, C. E., “The Challenge of Open Systems,”
Byte, April 1985, p. 223-242, 1985.

[18] Hirotsu, T., “A Flexible Transaction Facility for
Distributed Object-Oriented Systems,” Proceedings of
IEEE Workshop on Object-Orientation in Operating
Systems, September, 1992.

[19] Honda, K. and Tokoro, M., “An Object Calculus for
Asynchronous Communication,” Proceedings of
ECOOP’91, LLNCS 512, p. 133-147, June, 1991.

[20] Honda, K. and Tokoro, M., “Combinator
Representation of Mobile Processes,” Proceedings of
Symposium on Principle of Programming Languages,
Janvary, 1993,

[21] Honda, Y. and Tokoro, M., “Soft Real-Time
Programming through Reflection,” Proceedings of
IMSA’92 International Workshop on Reflection and
Meta-level Architectures, 1992

[22] Huberman, B. A. (ed), The Ecology of
Computation, North-Holland, 1988.

[23] Huhns, M. N. (ed), Distributed Artificial
Intelligence, Vol. 1, Pitman, London, 1987.

[24] Ishikawa, Y. and Tokoro, M., “A Concurrent

Object-Oriented Knowledge Representation Language

Orient84/K: Its Features and Implementation,”

Il’grfg)ceedings of OOPSLA 86, p. .232-241, September,
6.

[25] Kiczales, G., “Towards a New Model of
Abstraction in Software Engineering,” Proceedings of
the IMSA’92 International Workshop on Reflection and
Meta-level Architectures, 1992.

September 26—October 1, 1993

[26] Kitano, H. and Hendler, J., eds., Massively Parallel
Artificial Intelligence, The MIT Press, 1994.

[27] Lorenz, K., Das Sogenannte Bose,
Dr. G. Borotha-Schoeler Verlag, 1963.

[28] Maes, P., “Concepts and Experiments in
Computational Reflection,” Proceedings of OOPSLA’87,
p. 147-155, 1987.

[29] Matsubayashi, K., “A Collaboration Mechanism on
Positive Interactions in Multi-Agent Environments,”
Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI’93), p. 346-351, August,
1993.

[30 Milner, R., Parrow, ., and Walker, D., “A Calculus
of Mobile Processes, Part 1 & 2,” Technical report
ECS-LFCS-89-85 & 86, University of Edinburgh, 1989.

[31] Minohara, T. and Tokoro, M., “Providing Dynamic
Abstractions and Type Specifications for Persistent
Information,” Proceedings of Int. Conf. on Deductive
and Object-Oriented Databases, December, 1991,

[32] Minsky, M., The Society of Mind, Simon and
Schuster, New York, 1987.

[33] Nagao, K. and Takeuchi, A., “A New Modality for
Natural Human-Computer Interaction: Integration of
Speech Dialogue and Facial Animation,” Proceedings of
the International Symposium on Spoken Dialogue
(ISSD’93), p. 129-132, 1993.

[34] Nierstrasz, O. M., “Active Objects in Hybrid,”
Proceedings of OOPSLA’87, p. 243-253, September,
1987.

[35] Numaoka, C. and Takeuchi, A., “Collective Choice
of Strategic Type,” Proceedings of International
Conference on Simulation of Adaptive Behavior
(SAB92), December. 1992.

[36] Ohira, T. and Cowan, J. D., “Feynman Diagrams
for Stochastic Neurodynamics,” Proceedings of
Australian Conference of Neural Networks, January
1994,

[37] Okamura, H., Ishikawa, Y., and Tokoro, M.,
“Metalevel Decomposition in AL-1/D,” Proceedings of
Object Technologies for Advanced Software, LNCS No.
742, p. 110-127, November, 1993.

[38] Osawa, E., “A Scheme for Agent Collaboration in
Open Multiagent Environment,” Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI'93), p. 352-358, August, 1993.

[39] Popper, K. R., The Open Society and its Enemies,
Princeton University Press, 1945,

[40] Popper, K. R. and Lorenz, K., Die Zukunft ist Offen
(The Future is Open), R. Piper GmbH & Co., 1985.

[41] Prigogine, 1. and Stengers, 1., Order out of Chaos,
Bantam Books, 1984.

[42] Satoh, 1. and Tokoro, M., “A Formalism for Real-
Time Concurrent Object-Oriented Computing,”
Proceedings of OOPSLA’92, p. 315-326, 1992.

[43] Shionozaki, A. and Tokoro, M., “Control Handling
in Real-Time Communication Protocols,” Proceedings of
SIGCOMM’93, 1993.

Addendum to the Proceedings

[44] Shriver, B. and Wegner, P, eds., Research
Directions in Object-Oriented Programming, MIT Press,
1987.

[45]) Maynard Smith, J., Evolution and the Theory of
Games, Cambridge University Press, 1982.

[46] Tani, J. and Fukumura, N., “Learning Goal-directed
Sensory-based Navigation of a Mobile Robot,” Neural
Networks, in press.

[47] Takashio, K. and Tokoro, M., “DROL: An Object-
Oriented Programming Language for Distributed Real-
time Systems,” Proceedings of ACM OOPSLA’92,

p. 276-294, October, 1992.

[48] Takeuchi, A. and Nagao, K., “Communicative
Facial Displays as a New Conversational Modality,”
Proceedings of ACM/IFIP INTERCHI, 1993.

[49] Teraoka, F., Yokote, Y., and Tokoro, M., “A
Network Architecture Providing Host Migration
Transparency,” Proceedings of ACM SIGCOMM’91, p.
200-220, 1991.

[50] Teraoka, F., Claffy, K, and Tokoro, M., “Design,
Implementation, and Evaluation of Virtual Internet
Protocol,” Proceedings of 12th International Conference
on Distributed Computing Systems, p. 170-177, 1992.

[51] Tinbergen, N., Social Behaviour in Animals,
Methuen & Co. Ltd., 1953.

[52] Tokoro, M., “Computational Field Model: Toward
a New Computing Model/Methodology for Open
Distributed Environment,” Proceedings 2nd IEEE
Workshop on Future Trends in Distributed Computing
Systems, September, 1990.

[53] Uehara, M. and Tokoro, M., “An Adaptive Load
Balancing Method in the Computational Field Model,”
QOPS Messenger, Vol. 2, No. 2, April, 1991.

[54] Watari, S., Honda, Y., and Tokoro, M., “Morphe: A
Constraint-Based Object-Oriented Language Supporting
Situated Knowledge,” Proceedings of International
Conference on Fifth Generation Computer Systems,
1992.

[55] Waters, K., “A Muscle Model for Animating
Three-Dimensional Facial Expression,” Computer
Graphics, Vol. 21, No. 4, p. 17-24, 1987.

[56] Yokote, Y. and Tokoro, M., “The Design and
Implementation of Concurrent SmallTalk,” Proceedings
of OOPSLA’86, p. 331-340, September, 1986.

[57] Yokote, Y., Teraoka, F., and Tokoro, M., “A
Reflective Architecture for an Object-Oriented
Distributed Operating System,” Proceedings of
ECOOP’89, p. 89-108, July, 1989,

[58] Yokote, Y., “The Apertos Reflective Operating
System: The Concept and its Implementation,”
Proceedings of OOPSLA’92, p. 397-413, October, 1992,

[59] Yonezawa, A., eds., ABCL An Object-Oriented
Concurrent Systems, MIT Press, 1990.

[60] Yonezawa, A. and Tokoro, M., eds., Object-
Oriented Concurrent Programming,
MIT Press, 1987.

OOPSLA’93 11

Contact Information:

Mario Tokoro

Department of Computer Science
Keio University

3-14-1 Hiyoshi

Yokohama 223 Japan

E-mail: mario@keio.ac.jp

Mario Tokoro

Sony Computer Science Laboratory Inc.
Takanawa Muse Building,

3-14-13 Higashi Gotanda, Shinagawa-ku
Tokyo, 141 Japan

E-mail: mario@csl.sony.co.jp

12

Washington, D.C.

September 26—October 1, 1993

